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Roughness Scaling of Fracture Surfaces in Polycrystalline Materials

Eira T. Sepp̈alä, Bryan W. Reed, Mukul Kumar, Roger W. Minich, and Robert E. Rudd
Lawrence Livermore National Laboratory, L-415, Livermore, CA 94551, U.S.A.

ABSTRACT

The roughness scaling of fracture surfaces in two-dimensional grain boundary networks is stud-
ied numerically. Grain boundary networks are created using a Metropolis method in order to mimic
the triple junction distributions from experiments. Fracture surfaces through these grain boundary
networks are predicted using a combinatorial optimization method of maximum flow− minimum
cut type. We have preliminary results from system sizes up toN = 22500 grains suggesting
that the roughness scaling of these surfaces follows a random elastic manifold scaling exponent
ζ = 2/3. We propose a strong dependence between the energy needed to create a crack and the
special boundary fraction. Also the special boundaries at the crack and elsewhere in the system
can be tracked.

INTRODUCTION

Fracture in random media has been of considerable interest in the field of theoretical statistical
mechanics for a few decades [1, 2], especially in terms of roughness scaling and toughness prop-
erties of crack surfaces. However, the statistical mechanics studies of scaling of fracture surfaces
in random media have been conducted using simplified, arbitrary models, such as analytical distri-
butions to describe randomness, and regular lattices for the structure of the material. One attempt
to study more realistic systems is a recently published study of scaling laws for manifolds in poly-
crystalline materials, which used a simple model for transgranular and intergranular cracks, but
neglected any dynamical effects [3]. Here we propose that polycrystalline materials with varying
grain boundary strengths provide a good example of random media [4, 5, 6], where only intergran-
ular fracture is allowed. The orientation of the grains and boundaries can be essentially random,
giving rise to a distribution of strengths among grains.

We study fracture in polycrystalline materials by generating grain boundary networks using a
Metropolis method in order to mimic the triple junction distributions for special boundaries from
experimental samples. The final fracture surface and its properties are predicted from the structure
of the material, in particular from the topology of the grain boundary network and the strength
properties of the different boundaries in the network. The method used here for predicting the final
fracture surface has been developed in statistical mechanics and shown to be very efficient [7, 8]. It
finds the weakest (minimum energy) path through the material using a combinatorial optimization
method [9].

In this paper we especially wish to study how the properties of the predicted fracture surfaces
are dependent on the fraction of special boundaries and whether the scaling of roughnessw with
respect to the system sizeL follows the random elastic manifold universality classw ∼ Lζ , with
the characteristic roughness exponentζ = 2/3 in two dimensions.



METHODS

Generation of grain boundary networks

The grain boundary networks are created by constructing a Delaunay connectivity network
from randomly positioned points. The lines of the networks in fact correspond the dual network
of the actual grain boundary network (which can be created using a Voronoi construction and has
been done here in order to derive the length of each of the grain boundaries). After the centers of
the neighboring grains are connected with the Delaunay network, the types of the grain boundaries
are assigned. This is done using a Metropolis algorithm. The mathematics behind the algorithm
is presented in an article [10]. In the Metropolis algorithm the temperature (an abstract, dimen-
sionless parameter in this case, not a real physical temperature) controls the fraction of the special
grain boundaries: the higher the inverse temperature (β = 1/kBT ), the greater the fraction of
special boundaries, due to their low energies. Because of the low interfacial energies the special
boundaries are also stronger (more fracture resistant) than random boundaries. Each of the net-
works was started from a random configuration and equilibrated with a number of Monte Carlo
steps equal to1000 times the grain count. Here we treat as special boundaries, the boundaries with
Σ = 3n, n = 0, 1, 2, 3, 4, orΣ1, Σ3, Σ9, Σ27, Σ81; and the rest are functionally equivalent random
boundaries.

In order to study the strength properties of such networks a theoretical, idealized strength per
length function was chosen,σ = (57/Σ) + 1 for special boundaries andσ = 1 for random bound-
aries, such thatΣ = 3 (Σ3 boundary) is20 times stronger than a random boundary. Theσ-value of
each grain boundary is naturally multiplied by its length givingσl.

Weakest paths through the networks

The method to predict the fracture surface is to find the global weakest path through the net-
work [7, 8, 9]. This has been done by creating a flow network from the Delaunay connectivity
network between grains. In this flow network each edge of the network has acapacitydepending
on the strength valueσl of the grain boundary. Two extra vertices are introduced: a source and a
sink. The source and the sink are at opposite sides of the network mimicking mode I -loading. So
calledmaximum flow− minimum cutalgorithms have been proved to give an exact solution for
finding the bottleneck of the network where one tries to push as much flow as possible from the
source to the sink [11]. This bottleneck is the global lowest energy or weakest path solution to cut
the random network in two parts. We have used an efficient version of the network developed by
Goldberg [12], and it scales nearly linearly with respect to the number of vertices in the system
and solves a problem with106 vertices in one minute of CPU-time on a standard workstation.

RESULTS

Special boundary fraction and triple junction distributions

For the purpose of this study, scaling of the roughness of the fracture surfaces, we created grain
boundary networks with different sizes, the number of grains varying asN = 225, 1000, 2500, 6400,
10000, and22500. For each of the networks we hadNr different random configurations, such that
Nr = 2500 (for N = 225), 1000 (N = 1000), 250 (N = 2500), 100 (N = 6400), 60 (N = 10000),
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Figure 1. (a) Special boundary fractionf versus inverse temperatureβ and (b) triple junction
distributionsJk from networks withN = 1000 grains andNr = 1000 random configurations at
each temperature. Filled symbols represent thosef andβ values for which different grain boundary
network sizes were generated. The triple junction distributions differ from naive random, binomial
distributions.

and 25 (N = 22500). For each of the networks we used four different inverse temperatures,
β = 0.20, 0.24, 0.30, and 0.34. The inverse temperatures correspond to four different special
boundary fractionsf , or fraction of the boundaries which are special of all the boundaries in the
network,f = 0.09, 0.31, 0.70, 0.85, see figure 1.

In order to find the special boundary fraction with respect to the inverse temperature as well
as the triple junction distributions, we generated networks withN = 1000 (Nr = 1000) and extra
inverse temperaturesβ = 0.18, 0.22, 0.26, 0.28, 0.32, 0.36, and0.38. In figure 1(a) the relationship
between the inverse temperature and the special boundary fraction is shown. Figure 1(b) shows
from all the triple junctions in the networks, theJk value wherek is the number of the special
boundaries in the junction. The triple junction distributions differ from the random configurations
(the random result is thatJ1 andJ2 are symmetric with each other, as areJ0 andJ3) as well as
from the experimental values [5]. In the experimentsΣ1 boundaries are neglected and, indeed, our
algorithm reproduces the correct distributions when the triple junctions withΣ1 boundaries are not
taken into account. This result will be published elsewhere [13].

Roughness and strength with varying system size

Figure 2(a) shows an example of a network withN = 22500 grains (β = 0.30, f = 0.70) and
with the weakest path through the system or the predicted fracture surface or, what we call here,
the crack. In figure 2(b) we have calculated the fraction of the types of the boundaries everywhere
in the system and at the crack for a system withN = 22500 grains andβ = 0.34 or f = 0.85.
The statistics are fromNr = 25 random configurations. As visible from the figure,Σ1 andΣ3
boundaries are unfavored in the crack. For lower special boundary fractions even largerΣ values
are unfavored: atf = 0.09 even theΣ81 peak drops, forf = 0.31 Σ27 is the highest special
boundary value for which the fraction drops, and forf = 0.70 Σ9 drops butΣ27 andΣ81 increase.
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Figure 2. (a) An example of the grain boundary network withN = 22500 grains andβ = 0.30
or f = 0.70. The darker the line, the stronger the grain boundary. The black thick line is the
predicted crack from which the roughness is measured in root-mean-square-fluctuations sense. (b)
Special boundaries at the crack and elsewhere in the system withN = 22500 grains (Nr = 25) and
β = 0.34 or f = 0.85. The number ofΣ1 andΣ3 boundaries is smaller at the crack than elsewhere
in the system. The population of the other boundary types is increased at the crack.

We have checked that this result is independent of the system size.
The roughness is calculated in the root-mean-square-fluctuations sense,w = 〈(y−y)2〉1/2, from

the height of the surface as depicted in figure 2(a). Figure 3(a) shows the scaling of the roughness
w. Although much better statistics are needed and the requisite calculations are underway there
is an indication, that it follows the universal random elastic manifold exponentζ = 2/3. It is
interesting to note that the biggest amplitudea from w ∼ aLζ is not for the largestf but at an
intermediate special boundary fraction.

The energy or the total strength (sum of the strength valuesσl belonging to the crack) of the
crack is plotted in figure 3(b) showing that it scales linearly with is length, which is in line with
the random elastic manifold scaling. We use here and throughout the article the term energy to
describe the total strength due to the connection of the weakest path algorithm with minimum
energy surfaces. Figure 3(b) shows, too, that the energy is strongly dependent on the special
boundary fraction.

Roughness and energy with varying special boundary fraction

We also calculate the roughness and energy with respect to the special boundary fraction for a
constant system sizeN = 1000 grains. As visible in figure 4(a) the roughness is indeed the highest
for the intermediate special boundary fractions and lower for small and large special boundary
fractions. This is natural when thinking that it is a measure of randomness, and thus related to the
susceptibility of the surface. At low special boundary fractions the crack may propagate nearly
straight through the material in order to minimize its elastic line energy. At intermediatef values
it needs to wander in order to take advantage of the low energy/strength regions in the system.
At high f values the wandering becomes too expensive and again straight cracks are preferred.
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Figure 3. (a) Roughness of the crack and (b) energy (the sum of the strength values of the bound-
aries at the crack) needed to create it versus linear system sizeN1/2 for each of the system size
N = 225 − 22500 and special boundary fractionsf = 0.09, 0.31, 0.70, 0.85. The roughness fol-
lows scaling with an exponentζ = 2/3 and the energy is linearly dependent on the linear length of
the system.

However, the energy is very strongly dependent on the special boundary fraction, related by the
exponential of an exponential function as visible in figure 4(b). Thus all the systems can be broken,
but with higher special boundary fractions it costs many times more energy than with lower special
boundary fractions.

CONCLUSIONS

We have studied the fracture of grain boundary networks in two dimensions and have been able
to generate efficient algorithms for that purpose. The scaling of the roughness of the fracture sur-
faces suggests that the fracture paths follow the random elastic manifold scaling with the exponent
ζ = 2/3. Better statistics are needed to confirm this. The elastic manifold scaling implies that
the correlations due to the crystallographic constraints are short-range in the sense that they do not
change the universality class. We have demonstrated that the population of special boundaries at
the crack depends on the overall special boundary fraction, independent of the system size; and
that there is very strong dependence between the energy needed to create a crack and the special
boundary fraction. It is shown that the roughness is the highest at the intermediate special boundary
fractions, too.

In the future we will test different types of algorithms to generate the networks and see if that
plays any role. We will also develop more realistic strength functions using molecular dynamics
calculations for different types of grain boundaries; including bismuth embrittled boundaries in
copper. We aim to compare our results with fracture tests from experimental samples. And al-
though this work was two-dimensional all the computational methods can be extended to and the
algorithms already work in three dimensions.
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Figure 4. (a) Roughness of the crack and (b) the energy needed to create it versusf =
0.03, 0.09, 0.18, 0.31, 0.46, 0.60, 0.71, 0.80, 0.86, 0.91, 0.94, and0.96. The system size isN =
1000 grains and for eachf Nr = 1000. The roughness is the highest at intermediate special
boundary fractions. The sum of the strength values of the boundaries at the crack depends expo-
nentially to exponential on the special boundary fraction.
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